OXFORD ENGINEERING SCIENCE SERIES · 25

# The Physics of Fluid Turbulence

W. D. McCOMB

**OXFORD SCIENCE PUBLICATIONS** 

## DTI 204

DK 551.51.6

### The Physics of Fluid Turbulence

#### W.D.MCCOMB

Department of Physics University of Edinburgh



#### CLARENDON PRESS · OXFORD

1990

### CONTENTS

| N | OTAT | ΓΙΟΝ                                                                                                            | xxi  |
|---|------|-----------------------------------------------------------------------------------------------------------------|------|
| 1 |      | E SEMI-EMPIRICAL PICTURE OF TURBULENT SHEAR                                                                     |      |
|   | FLC  | DW and the second se | 1    |
|   | 1.1  | The equations of fluid motion                                                                                   | 2    |
|   | 1.2  | A brief statement of the problem                                                                                | 4    |
|   | 1.3  | The statistical formulation                                                                                     | 7    |
|   |      | 1.3.1 Equations for the mean velocity                                                                           | 7    |
|   |      | 1.3.2 The energy balance equation for fluctuations                                                              | 9    |
|   | 1.4  | Two-dimensional mean flow as a special case                                                                     | 11   |
|   |      | 1.4.1 The boundary-layer equations of motion                                                                    | • 13 |
|   |      | 1.4.2 The turbulent boundary layer: length and velocity scales                                                  | 14   |
|   |      | 1.4.3 Universal mean velocity distribution near a solid surface                                                 | 16   |
|   |      | 1.4.4 A simple way of calculating the friction drag due to a                                                    |      |
|   |      | boundary layer                                                                                                  | 17   |
|   |      | 1.4.5 Empirical relationships for resistance to flow through ducts                                              | 18   |
|   | 1.5  | Semi-empirical theoretical methods                                                                              | 20   |
|   |      | 1.5.1 The eddy-viscosity hypothesis                                                                             | 20   |
|   |      | 1.5.2 The Prandtl mixing-length model for flow near a solid                                                     |      |
|   |      | boundary                                                                                                        | 20   |
|   |      | 1.5.3 The mixing-length model applied to a free jet                                                             | 22   |
|   | 1.6  | Some experimental results for shear flows                                                                       | 24   |
|   |      | 1.6.1 Mean and root mean square velocity distributions in duct                                                  |      |
|   |      | flow                                                                                                            | 25   |
|   |      | 1.6.2 The turbulent energy balance                                                                              | 28   |
|   |      | 1.6.3 Mean and root mean square velocity distributions in a                                                     |      |
|   |      | plane jet                                                                                                       | 31   |
|   | 1.7  | Further reading                                                                                                 | 33   |
|   | Note | e                                                                                                               | 341  |
|   | Refe | rences                                                                                                          | 34   |
| 2 | THE  | E FUNDAMENTAL APPROACH                                                                                          | 36   |
|   | 2.1  | The Navier-Stokes equation in solenoidal form                                                                   | 36   |
|   | 2.2  | The general statistical formulation                                                                             | 39   |
|   | 2.2  | 2.2.1 Statistical equations and the closure problem                                                             | 40   |
|   |      | 2.2.2 Two-point correlations                                                                                    | 42   |
|   | 2.3  | Reduction of the statistical equations to the form for channel                                                  | 12   |
|   | 2.0  | flow as an example                                                                                              | 45   |
|   | 2.4  | How as an example<br>Homogeneous isotropic turbulence                                                           | 47   |
|   | 2.1  | 2.4.1 Isotropic form of the two-point correlation tensor                                                        | 49   |
|   |      | 2.4.2 Length scales for isotropic turbulence                                                                    | 51   |
|   | 25   | Stationary turbulence                                                                                           | 53   |

|  | CO | NT | <b>FEN</b> | TS |
|--|----|----|------------|----|
|--|----|----|------------|----|

|   | 2.6  | Fouri   | er analysis of the turbulent velocity field                 | 54  |
|---|------|---------|-------------------------------------------------------------|-----|
|   |      | 2.6.1   | The solenoidal Navier-Stokes equations                      | 55  |
|   |      | 2.6.2   | Homogeneity and the velocity-field moments                  | 56  |
|   |      |         | Limit of infinite system volume                             | 58  |
|   |      |         | The isotropic spectrum tensor                               | 59  |
|   |      |         | The Taylor hypothesis and the one-dimensional spectrum      | 61  |
|   |      | 2.6.6   | Statistical equations in wavenumber space:                  |     |
|   |      |         | many-time moments                                           | 63  |
|   |      | 2.6.7   | Statistical equations in wavenumber space:                  |     |
|   |      |         | single-time moments                                         | 64  |
|   | 2.7  | The e   | nergy cascade in isotropic turbulence                       | 65  |
|   |      | 2.7.1   | The energy balance equation                                 | 65  |
|   |      | 2.7.2   |                                                             | 67  |
|   |      | 2.7.3   | Interpretation in terms of vortex stretching.               | 73  |
|   | 2.8  | Closu   | re approximations                                           | 75  |
|   |      |         | The Heisenberg effective viscosity theory                   | 76  |
|   |      |         | The quasi-normality hypothesis.                             | 77  |
|   | 2.9  |         | representative experimental results for spectra             | 81  |
|   |      |         | One-dimensional energy spectra                              | 81  |
|   |      |         | The Kolmogorov constant                                     | 83  |
|   |      |         | Energy transfer in wavenumber space                         | 84  |
|   | 2.10 |         | her reading                                                 | 86  |
|   |      | erences |                                                             | 86  |
|   |      |         | · · ·                                                       |     |
| 3 |      |         | ECENT DEVELOPMENTS IN THE STUDY OF                          |     |
|   | TU   | RBUL    |                                                             | 88  |
|   | 3.1  | Meas    | urement techniques and data analysis                        | 88  |
|   |      |         | Anemometry                                                  | 88  |
|   |      |         | The laser anemometer                                        | 92  |
|   |      |         | Time series analysis and computer data processing           | 98  |
|   | 3.2  | Interr  | nittency and the turbulent bursting process                 | 100 |
|   |      |         | Fine-structure intermittency                                | 101 |
|   |      |         | Intermittency and the energy cascade                        | 104 |
|   |      |         | Intermittent generation of turbulence: the bursting process | 109 |
|   | 3.3  |         | erical computation of turbulent flows                       | 112 |
|   |      | 3.3.1   | Direct numerical simulation (DNS)                           | 113 |
|   |      | 3.3.2   | Large-eddy simulation (LES)                                 | 118 |
|   |      | 3.3.3   | The use of the Reynolds-averaged Navier-Stokes equations    |     |
|   |      |         | for practical calculations                                  | 125 |
|   |      | 3.3.4   | An example of a two-equation turbulence model               | 128 |
|   | 3.4  | Turbu   | alent drag reduction by additives                           | 130 |
|   |      |         | Historical background                                       | 132 |
|   |      | 3.4.2   | Polymer properties                                          | 134 |
|   |      | 3.4.3   | The threshold effect                                        | 136 |
|   |      | 3.4.4   | Maximum drag reduction                                      | 139 |
|   |      |         | Drag reduction in fibre suspensions                         | 140 |

xiv

| 2 | 0 | N  | T | D | NT | т | C |
|---|---|----|---|---|----|---|---|
| C | U | IN | 1 | L | IN | 1 | 0 |

|   | 3.5  | Renor   | malization methods and the closure problem                      | 141 |
|---|------|---------|-----------------------------------------------------------------|-----|
|   |      | 3.5.1   | Renormalization methods in statistical physics                  | 142 |
|   |      | 3.5.2   | Renormalized perturbation theory                                | 144 |
|   |      | 3.5.3   | Renormalization group (RG) methods.                             | 148 |
|   | Refe | rences  |                                                                 | 149 |
| 4 | STA  | TISTI   | CAL FORMULATION OF THE GENERAL PROBLEM                          | 154 |
|   | 4.1  | Turbu   | lence in the context of classical statistical mechanics         | 154 |
|   |      | 4.1.1   | Statistical mechanics of the classical N-particle system        | 156 |
|   |      | 4.1.2   | Kinetic equations in statistical mechanics                      | 160 |
|   |      | 4.1.3   | The difficulties involved in generalizing statistical mechanics |     |
|   |      |         | to include turbulence                                           | 165 |
|   | 4.2  | Funct   | ional formalisms for the turbulence problem                     | 167 |
|   |      | 4.2.1   | The space-time functional formalism                             | 169 |
|   |      | 4.2.2   | The k-space-time functional formalism                           | 172 |
|   |      | 4.2.3   | The Hopf equation for the characteristic functional             | 174 |
|   |      | 4.2.4   | General remarks on functional formalisms                        | 176 |
|   | 4.3  | Test p  | roblems in isotropic turbulence                                 | 176 |
|   |      | 4.3.1   | Free decay of turbulence                                        | 177 |
|   |      | 4.3.2   | Stationary isotropic turbulence                                 | 179 |
|   | 4.4  | Furth   | er reading                                                      | 182 |
|   | Not  | e       |                                                                 | 182 |
|   | Refe | erences |                                                                 | 182 |
| 5 |      |         | ALIZED PERTURBATION THEORY AND THE                              |     |
|   | TUI  | RBULE   | ENCE CLOSURE PROBLEM                                            | 184 |
|   | 5.1  | Time    | evolution and propagators                                       | 184 |
|   | 5.2  | Pertu   | rbation methods using Feynman-type diagrams                     | 186 |
|   | 5.3  | Equili  | brium system with weak interactions: an introduction to         |     |
|   |      | renorm  | malized perturbation theory                                     | 190 |
|   |      | 5.3.1   | Interactions in dilute systems and the connection with          |     |
|   |      |         | macroscopic thermodynamics                                      | 191 |
|   |      | 5.3.2   | Primitive perturbation expansion for the configuration integral | 193 |
|   |      | 5.3.3   | Renormalized expansion for the free energy                      | 199 |
|   | 5.4  | The el  | ectron gas: an example with long-range forces                   | 201 |
|   |      | 5.4.1   | Phenomenological theory: the screened potential                 | 202 |
|   |      | 5.4.2   | Perturbation calculation of the free energy                     | 204 |
|   | 5.5  | Pertu   | rbation expansion of the Navier-Stokes equation                 | 205 |
|   |      | 5.5.1   | The zero-order isotropic propagators                            | 206 |
|   |      | 5.5.2   | The primitive perturbation expansion                            | 208 |
|   |      | 5.5.3   | Graphical representation of the perturbation series             | 213 |
|   |      | 5.5.4   | Class A diagrams: the renormalized propagator                   | 217 |
|   |      | 5.5.5   | Class B diagrams: renormalized perturbation series              | 218 |
|   |      | 5.5.6   | Second-order closures                                           | 221 |
|   | Not  | es      |                                                                 | 223 |
|   | Refe | erences |                                                                 | 223 |

xv

#### CONTENTS

| 6        |      | NORM<br>ST KII | ALIZED PERTURBATION THEORIES OF THE                         | 225 |
|----------|------|----------------|-------------------------------------------------------------|-----|
|          | 6.1  |                | irect-interaction approximation (DIA)                       | 225 |
|          | 0.1  | 6.1.1          | The infinitesimal response tensor                           | 225 |
|          |      | 6.1.2          | Perturbation expansion of the velocity field                | 220 |
|          |      | 6.1.3          | Perturbation expansion of the velocity held                 | 221 |
|          |      | 0.1.5          | tensors                                                     | 228 |
|          |      | 6.1.4          | Second-order equations for the isotropic response and       | 220 |
|          |      | 0.1.4          | correlation functions                                       | 232 |
|          |      | 6.1.5          | Spectral transport of energy: the inertial range            | 232 |
|          |      | 6.1.6          | The DIA energy spectrum in the inertial range               | 237 |
|          |      | 6.1.7          | Alternative derivation of DIA by the method of reversion of | 231 |
|          |      | 0.1.7          | power series                                                | 240 |
| <i>x</i> |      | 6.1.8          | Concluding remarks.                                         | 240 |
|          | 6.2  |                | dwards–Fokker–Planck theory                                 | 241 |
|          | 0.2  | 6.2.1          | The derivation of the Liouville equation                    | 242 |
|          |      | 6.2.2          | The Edwards–Fokker–Planck equation                          | 245 |
|          |      | 6.2.3          | Evaluation of the coefficients in the expansion for the     | 210 |
|          |      | 0.2.5          | probability distribution of velocities                      | 248 |
|          |      | 6.2.4          | The energy-balance equation                                 | 250 |
|          |      | 6.2.5          | The response equation                                       | 252 |
|          |      | 6.2.6          | Comparison with the DIA                                     | 253 |
|          |      | 6.2.7          | The limit of infinite Reynolds number                       | 255 |
|          | 6.3  |                | onsistent field theory                                      | 257 |
|          | 0.5  | 6.3.1          | Time-dependent SCF                                          | 262 |
|          |      | 6.3.2          | Other self-consistent methods                               | 264 |
|          | Not  | e              |                                                             | 265 |
|          | Refe | erences        |                                                             | 265 |
| 7        | REI  | NORM           | ALIZED PERTURBATION THEORIES OF                             |     |
|          |      |                | OND KIND                                                    | 267 |
|          | 7.1  | The lo         | ow-wavenumber catastrophe                                   | 267 |
|          | /    | 7.1.1          | The infra-red divergence                                    | 267 |
|          |      | 7.1.2          | Spurious convection effects                                 | 269 |
|          |      | 7.1.3          | Postulate of random Galilean invariance                     | 274 |
|          |      | 7.1.4          | Response integrals with an arbitrary cut-off in wavenumber  | 276 |
|          | 7.2  |                | ngian-history direct-interaction theories                   | 277 |
|          |      | 7.2.1          | The Lagrangian-history formulation                          | 278 |
|          |      | 7.2.2          | The statistical formulation                                 | 281 |
|          |      | 7.2.3          | DIA adapted to Lagrangian-history coordinates               | 282 |
|          |      | 7.2.4          | Abridged LHDI theory                                        | 286 |
|          |      | 7.2.5          | Other Lagrangian theories                                   | 288 |
|          | 7.3  | Modi           | fied EFP theories.                                          | 290 |
|          |      | 7.3.1          | Maximal entropy principle                                   | 290 |
|          |      | 7.3.2          | The response function determined by a local energy          |     |
|          |      |                | balance                                                     | 294 |
|          |      | 7.3.3          | Local energy-transfer equations                             | 298 |

xvi

| CONTEN | TS |  |
|--------|----|--|
|--------|----|--|

|   | 7.4      | Local energy-transfer theory of non-stationary turbulence (LET)  | 300 |
|---|----------|------------------------------------------------------------------|-----|
|   |          | 7.4.1 The velocity-field propagator                              | 300 |
|   |          | 7.4.2 The generalized covariance equation                        | 303 |
|   |          | 7.4.3 Equations for the correlation and propagator functions     | 305 |
|   |          | 7.4.4 Comparison with DIA                                        | 306 |
|   | 7.5      | Near-Markovian model closures                                    | 307 |
|   |          | 7.5.1 Quasi-normal Markovian approximations                      | 307 |
|   |          | 7.5.2 The test-field model                                       | 309 |
|   | Not      |                                                                  | 310 |
|   | Refe     | erences                                                          | 310 |
| 8 | AN       | ASSESSMENT OF RENORMALIZED PERTURBATION                          |     |
|   | TH       | EORIES                                                           | 311 |
|   | 8.1      | Free decay of isotropic turbulence as a test problem             | 311 |
|   | 8.2      | Calculations of decaying turbulence at low Reynolds numbers      | 316 |
|   |          | 8.2.1 The direct-interaction approximation (DIA)                 | 316 |
|   |          | 8.2.2 Comparison of various theories: Herring and Kraichnan      | 317 |
|   |          | 8.2.3 The LET theory                                             | 319 |
|   | 8.3      | Calculations of decaying turbulence at high Reynolds numbers     | 324 |
|   | 8.4      | The Kolmogorov spectrum as a test problem                        | 328 |
|   |          | 8.4.1 Do intermittency corrections have any bearing on           |     |
|   |          | our assessment of RPTs?                                          | 329 |
|   |          | 8.4.2 Is the Kolmogorov 5/3 law correct after all?               | 330 |
|   | 8.5      | Application to non-isotropic turbulence                          | 331 |
|   |          | 8.5.1 Application of DIA to inhomogeneous turbulence             | 331 |
|   |          | 8.5.2 The computational problems                                 | 333 |
|   |          | 8.5.3 Other applications                                         | 337 |
|   | 8.6      | Appraisal of the theories                                        | 337 |
|   |          | 8.6.1 Critique of DIA: the wider justification of RPT approaches | 337 |
|   |          | 8.6.2 Some comments on random Galilean invariance                | 340 |
|   | 8.7      | General remarks                                                  | 341 |
|   | 8.8      | Postscript: some current work                                    | 342 |
|   | Not      |                                                                  | 343 |
|   | Refe     | erences                                                          | 344 |
| 9 | RE       | NORMALIZATION GROUP THEORIES                                     | 346 |
|   | 9.1      | Background: RG applied to critical phenomena                     | 346 |
|   | <i>.</i> | 9.1.1 Ferromagnetism and the Ising model                         | 347 |
|   |          | 9.1.2 Block spins and RG                                         | 347 |
|   |          | 9.1.3 Space dimension and the epsilon expansion                  | 349 |
|   | 9.2      | Application of RG to turbulence                                  | 350 |
|   |          | 9.2.1 Determination of scaling laws                              | 350 |
|   |          | 9.2.2 Subgrid-scale modelling                                    | 351 |
|   | 9.3      | The Forster–Nelson–Stephen (FNS) theory                          | 353 |
|   |          | 9.3.1 Formulation of the problem                                 | 353 |
|   |          | 9.3.2 The perturbation series                                    | 355 |
|   |          |                                                                  |     |

xvii

CONTENTS

|    |       | 9.3.3 The effective viscosity                             | 357 |
|----|-------|-----------------------------------------------------------|-----|
|    |       | 9.3.4 Recursion relations                                 | 359 |
|    |       | 9.3.5 Behaviour near the fixed point                      | 361 |
|    |       | 9.3.6 Some later conjectures about FNS theory             | 363 |
|    | 9.4   | Application of RG by iterative averaging                  | 364 |
|    |       | 9.4.1 General formulation                                 | 365 |
|    |       | 9.4.2 Partial averaging of the small scales               | 367 |
|    |       | 9.4.3 The statistical equations of motion                 | 369 |
|    |       | 9.4.4 Moment hierarchy from partial averaging             | 370 |
|    |       | 9.4.5 A mean field approximation                          | 371 |
|    |       | 9.4.6 The RG equations                                    | 373 |
|    |       | 9.4.7 Second-order calculation of the effective viscosity | 374 |
|    |       | 9.4.8 The effect of higher-order moments                  | 377 |
|    | 9.5   | Concluding remarks.                                       | 377 |
|    | Note  | es                                                        | 378 |
|    | Refe  | rences                                                    | 379 |
| 10 | NU    | MERICAL SIMULATION OF TURBULENCE                          | 381 |
| 10 | 10.1  | Full simulations                                          | 381 |
|    | 10.1  |                                                           | 382 |
|    |       | 10.1.1 Isotropic turbulence<br>10.1.2 Shear flows         | 382 |
|    | 10.2  | Large-eddy simulations                                    | 385 |
|    | 10.2  | 10.2.1 Assessment of subgrid models                       | 388 |
|    | 10.3  | Application of renormalization methods to the             | 300 |
|    | 10.5  | subgrid modelling problem                                 | 389 |
|    |       | 10.3.1 Formulation of spectral LES                        | 390 |
|    |       | 10.3.2 Renormalized perturbation theory                   | 390 |
|    |       | 10.3.3 Renormalization group                              | 391 |
|    | 10.4  | Miscellaneous simulation methods                          | 397 |
|    | 10.4  | 10.4.1 Methods based on the Navier–Stokes equation        | 400 |
|    |       | 10.4.2 Alternatives to the Navier–Stokes equation         | 400 |
|    | Note  |                                                           | 401 |
|    |       | rences                                                    | 403 |
|    | recie |                                                           |     |
| 11 |       | IERENT STRUCTURES                                         | 406 |
|    | 11.1  | Coherent structures in free turbulent flows               | 407 |
|    |       | 11.1.1 Plane mixing layers                                | 407 |
|    |       | 11.1.2 Other free shear flows                             | 410 |
|    | 11.2  | Conditional sampling, intermittency, and the              |     |
|    |       | turbulent-non-turbulent interface                         | 410 |
|    | 11.3  | Transitional structures in boundary layers and pipes      | 413 |
|    |       | 11.3.1 Anatomy of the turbulent spot                      | 415 |
|    | 11.4  | Developed structures in boundary layers and pipes         | 416 |
|    |       | 11.4.1 Turbulent bursts                                   | 417 |
|    |       | 11.4.2 Frequency of turbulent bursts                      | 418 |
|    |       | 11.4.3 Streaky structure and streamwise vortices          | 420 |
|    |       | 11.4.4 Relationship between bursts and other types of     |     |
|    |       | intermittency                                             | 123 |

xviii

| CO | N | Т | E | N | TS |
|----|---|---|---|---|----|
|    |   |   |   |   |    |

|    | 11.5  | Theoretical approaches                                        | 425 |
|----|-------|---------------------------------------------------------------|-----|
|    |       | 11.5.1 Numerical simulation of bounded turbulence             | 426 |
|    |       | 11.5.2 Numerical simulation of free shear layers              | 427 |
|    |       | 11.5.3 Deterministic chaos                                    | 428 |
|    |       | 11.5.4 Wave theories                                          | 430 |
|    | 11.6  | Implications for other turbulence concepts                    | 431 |
|    | 11.7  |                                                               | 432 |
|    | Note  | -                                                             | 433 |
|    | Refer | ences                                                         | 433 |
| 12 | TUR   | BULENT DIFFUSION: THE LAGRANGIAN PICTURE                      | 436 |
|    | 12.1  | Diffusion by continuous movements                             | 437 |
|    | 12.2  | The problem of expressing the Lagrangian analysis in Eulerian |     |
|    |       | coordinates                                                   | 441 |
|    |       | 12.2.1 Statement of the problem                               | 442 |
|    |       | 12.2.2 Approximations based on the conjecture of Hay and      |     |
|    |       | Pasquill                                                      | 444 |
|    |       | 12.2.3 Approximations based on Corrsin's independence         |     |
|    |       | hypothesis                                                    | 446 |
|    |       | 12.2.4 Experimental measurements of Lagrangian quantities     | 447 |
|    | 12.3  | Relative diffusion                                            | 449 |
|    |       | 123.1 Richardson's law                                        | 451 |
|    |       | 12.3.2 Three-dimensional diffusion                            | 452 |
|    | 12.4  | The motion of discrete particles in a turbulent fluid         | 452 |
|    |       | 12.4.1 Some asymptotic results                                | 453 |
|    |       | 12.4.2 Tchen's analysis                                       | 454 |
|    | 12.5  | Applications of Taylor's analysis to shear flows              | 456 |
|    |       | rences                                                        | 458 |
|    |       |                                                               |     |
| 13 |       | BULENT DIFFUSION: THE EULERIAN PICTURE                        | 460 |
|    | 13.1  | Heat and mass transfer                                        | 461 |
|    |       | 13.1.1 Statistical formulation                                | 463 |
|    |       | 13.1.2 Single-point equations                                 | 465 |
|    |       | 13.1.3 Two-point equations                                    | 467 |
|    |       | 13.1.4 Some experimental measurements in pipes and jets       | 470 |
|    | 13.2  | Scalar transport in homogeneous turbulence                    | 471 |
|    |       | 13.2.1 The inertial-convective range of wavenumbers           | 474 |
|    |       | 13.2.2 Universal forms of the scalar spectrum                 | 475 |
|    | 1     | 13.2.3 Renormalized perturbation theory                       | 478 |
|    | 13.3  | The motion of discrete particles                              | 479 |
|    |       | 13.3.1 Governing equations for particles                      | 480 |
|    |       | 13.3.2 Interpretation in terms of a diffusion coefficient     | 482 |
|    |       | 13.3.3 Random walk models of particle diffusion               | 484 |
|    |       | 13.3.4 Measurements of particle motion in turbulent flows     | 489 |
|    | 13.4  | Turbulent mixing                                              | 490 |
|    | Note  |                                                               | 491 |
|    | Refer | ences                                                         | 491 |

xix

| CONTENT | S |
|---------|---|
|---------|---|

| 14            | NO   | N-NEWTONIAN FLUID TURBULENCE                                                                            | 494 |  |
|---------------|------|---------------------------------------------------------------------------------------------------------|-----|--|
|               | 14.1 | Non-Newtonian fluid flow                                                                                | 494 |  |
|               |      | 14.1.1 Rheological aspects                                                                              | 495 |  |
|               |      | 14.1.2 Composite systems: Newtonian fluid with modified                                                 |     |  |
|               |      | boundary conditions                                                                                     | 497 |  |
|               |      | 14.1.3 Flow in pipes                                                                                    | 498 |  |
|               |      | 14.1.4 Structural turbulence                                                                            | 500 |  |
|               |      | 14.1.5 Isotropic turbulence                                                                             | 501 |  |
|               | 14.2 |                                                                                                         | 505 |  |
|               |      | 14.2.1 Mean velocity distributions                                                                      | 506 |  |
|               |      | 14.2.2 Turbulent intensities                                                                            | 508 |  |
|               |      | 14.2.3 Spectra and correlations                                                                         | 509 |  |
|               |      | 14.2.4 The importance of the region near the wall                                                       | 509 |  |
|               |      | 14.2.5 Free turbulence                                                                                  | 511 |  |
|               | 14.3 | 3 Turbulent structure in drag-reducing fibre suspensions                                                | 512 |  |
|               |      | 14.3.1 Mean velocity distributions                                                                      | 512 |  |
|               |      | 14.3.2 Intensities, correlations, and spectra                                                           | 514 |  |
|               |      | 14.3.3 Mixed fibre-polymer suspensions                                                                  | 517 |  |
|               | 14.4 |                                                                                                         | 518 |  |
|               |      | 14.4.1 Heat and mass transfer                                                                           | 518 |  |
|               |      | 14.4.2 Turbulent diffusion                                                                              | 519 |  |
|               | 14.5 | 5 Comparison of polymers and macroscopic fibres as                                                      |     |  |
|               |      | drag-reducing additives                                                                                 | 520 |  |
|               | 14.6 | 5 Further reading                                                                                       | 521 |  |
|               |      | erences                                                                                                 | 522 |  |
|               |      |                                                                                                         |     |  |
| APPENDICES    |      |                                                                                                         |     |  |
|               | A    | Creation and dissipation of kinetic energy in a viscous fluid                                           | 524 |  |
|               | B    | Probability and statistics                                                                              | 527 |  |
|               | С    | Symmetry and invariance                                                                                 | 532 |  |
|               | D    | Application of Fourier methods and Green's functions to the                                             |     |  |
|               |      | Navier-Stokes equation                                                                                  | 536 |  |
|               | E    | Evaluation of the coefficients $L(\mathbf{k}, \mathbf{j})$ and $L(\mathbf{k}, \mathbf{k} - \mathbf{j})$ | 541 |  |
|               | F    | Optical background to laser-Doppler anemometry                                                          | 545 |  |
|               | G    | Second-order term in the perturbation series as an example of the                                       |     |  |
|               |      | diagram calculus                                                                                        | 550 |  |
|               | Η    | The Novikov functional formalism                                                                        | 554 |  |
|               |      |                                                                                                         |     |  |
| Author Index  |      |                                                                                                         | 557 |  |
| Subject Index |      |                                                                                                         | 565 |  |
|               |      |                                                                                                         |     |  |

Plates I and II fall between pp. 92 and 93

XX